Cosmology

V.A. Rubakov

Institute for Nuclear Research
of the Russian Academy of Sciences

Department of Particle Physics and Cosmology
Physics Faculty
Moscow State University
Tentative outline

Lecture 1
1. Introduction: homogeneous Universe
 1.1 Metric, redshift
 1.2 Friedmann equation and covariant energy conservation
 1.3 Radiation, matter and Λ
 1.4 Sample solutions
 1.4.1 Particle horizon
 1.4.2 de Sitter space; event horizon
 1.5 Stages of real Universe
 1.6 Conformal times of various epochs

Lecture 2
2. Cosmological perturbations I
 2.1 Helicity decomposition
 2.2 Tensor modes
 2.2.1 Equations
 2.2.2 Regimes of evolution
 2.2.3 Solution in subhorizon regime
 2.3 Vector modes
Lectures 3, 4
3. Cosmological perturbations II
Lecture 3

3.1 Scalar modes
 3.1.1 Equations
 3.1.2 Sample solutions
 3.1.2 Classification: adiabatic mode, entropy (isocurvature) modes

Lecture 4

3.2 Adiabatic mode
 3.2.1 Initial condition
 3.2.2 Summary of experimental results
 3.2.3 Evolution of baryon-photon component
 3.2.4 Evolution of dark matter
 3.2.5 After recombination. BAO, structure formation
Lecture 5
4. Elements of theory of CMB temperature anisotropy
 4.1 Sachs–Wolfe, Doppler and integrated Sachs–Wolfe effects
 4.2 Large angular scales
 4.3 Intermediate angular scales
 4.4 What do we learn from CMB temperature anisotropy

Lecture 6
5. Elements of theory of CMB polarization
 5.1 More about photon last scattering
 5.2 Reionization
 5.2 Polarization from Thomson scattering
 5.3 E- and B-modes
 5.4 Effect of scalar perturbations
 5.4 Effect of tensor perturbations
Cont’d

Lectures 7,8

6. Inflation
 6.1 Main idea
 6.2 Inflaton as a driver
 6.3 Generation of tensor perturbations
 6.4 Generation of scalar perturbations:
 inflaton mechanism
 6.5 Estimating non-Gaussianity
 6.6 Curvaton mechanism. Examples of non-Gaussianity
 6.7 Example of generation of entropy mode:
 axion misalignment

Lecture 9

7. Alternatives to inflation
 7.1 Bouncing Universe
 7.2 Genesis
 7.3 Generating scalar perturbations

8. Conclusions
\hbar = c = k_B = 1 \text{ calculator:}

ppc.inr.ac.ru/eng/uc.php
Causal structure of space-time in hot Big Bang theory (i.e., assuming that the Universe started right from the hot epoch)

Angular size of horizon at recombination $\approx 2^\circ$.
There are perturbations which were superhorizon at the time of recombination, angular scale $\gtrsim 2^\circ$. **Causality**: they could not have been generated at a hot epoch!
- 1000 K
- last scattering of CMB photons
- radiation-matter equality
- nucleosynthesis
- Generation of dark matter
- Generation of matter-antimatter asymmetry

Today

\[z \approx 0.6: \text{accelerated expansion begins} \]

2.7 K

13.8 billion years

3000 K

9200 K

\[10^{10} - 10^9 \text{ K} \]

380 thousand years

70 thousand years

1 - 500 s

Question mark
Cosmology

V.A. Rubakov

Institute for Nuclear Research of the Russian Academy of Sciences
Department of Particle Physics and Cosmology
Physics Faculty
Moscow State University
Tentative outline

Lecture 2
2. Cosmological perturbations I
 2.1 Generalities
 2.1.1 Perturbed metric. Gauge invariance.
 2.1.2 Perturbed energy-momentum tensor.
 2.2 Helicity decomposition
 2.3 Tensor modes
 2.3.1 Equation
 2.3.2 Regimes of evolution
 2.3.3 Solutions in superhorizon and subhorizon regimes. Matching.
 2.4 Digression: conformal times of recombination and radiation-matter equality
 2.5 Vector modes
Lectures 3, 4
3. Cosmological perturbations II
Lecture 3

3.1 Scalar modes
 3.1.1 Conformal Newtonian gauge
 3.1.2 Equations
 3.1.3 Sample solutions: single component fluids
 3.1.3.1 Master equation
 3.1.3.2 Radiation
 3.1.3.3 Matter
 3.1.3.4 Matter at Λ-domination
 3.1.2 Classification: adiabatic mode, entropy (isocurvature) modes
Cont’d

Lecture 4

3.2 Adiabatic mode
 3.2.1 Initial condition
 3.2.2 Summary of experimental results
 3.2.3 Evolution of baryon-photon component
 3.2.4 Evolution of dark matter
 3.2.5 After recombination. BAO, structure formation
Cont’d

Lecture 5
4. Elements of theory of CMB temperature anisotropy
 4.1 Sachs–Wolfe, Doppler
 and integrated Sachs–Wolfe effects
 4.2 Large angular scales
 4.3 Intermediate angular scales
 4.4 What do we learn from CMB temperature anisotropy

Lecture 6
5. Elements of theory of CMB polarization
 5.1 More about photon last scattering
 5.2 Reionization
 5.2 Polarization from Thomson scattering
 5.3 E- and B-modes
 5.4 Effect of scalar perturbations
 5.4 Effect of tensor perturbations
Lectures 7, 8
6. Inflation
 6.1 Main idea
 6.2 Inflaton as a driver
 6.3 Generation of tensor perturbations
 6.4 Generation of scalar perturbations: inflaton mechanism
 6.5 Estimating non-Gaussianity
 6.6 Curvaton mechanism. Examples of non-Gaussianity
 6.7 Example of generation of entropy mode: axion misalignment

Lecture 9
7. Alternatives to inflation
 7.1 Bouncing Universe
 7.2 Genesis
 7.3 Generating scalar perturbations

8. Conclusions
\[T = 2.726^\circ K, \quad \frac{\delta T}{T} \sim 10^{-4} - 10^{-5} \]
Einstein:

\[- \Delta \Psi + 3 \frac{a'}{a} \Psi' - 3 \frac{a'^2}{a^2} \Phi = 4 \pi G a^2 \delta \rho_{tot} , \]

\[- \Psi' + \frac{a'}{a} \Phi = -4 \pi G [(\rho + p) v]_{tot} , \]

\[\Psi'' - \frac{1}{3} (\Delta \Phi + \Delta \Psi) + \frac{a'}{a} (2 \Psi' - \Phi') - 2 \frac{a''}{a} \Phi + \frac{a'^2}{a^2} \Phi = -4 \pi G a^2 [\delta p]_{tot} , \]

\[\Delta (\Phi + \Psi) = -12 \pi G a^2 [(\rho + p) \pi]_{tot} . \]

Covariant conservation:

\[\delta \rho' + 3 \frac{a'}{a} (\delta \rho + \delta p) + (\rho + p) (\Delta v + 3 \Psi') = 0 , \]

\[[(\rho + p) v]' + \delta p + (\rho + p) \left(4 \frac{a'}{a} v + \pi + \Phi \right) = 0 . \]
Ideal fluids

Einstein eqs.:

\[\Delta \Phi - 3 \frac{a'}{a} \Phi' - 3 \frac{a''}{a^2} \Phi = 4\pi Ga^2 \cdot \delta \rho_{tot} \]

\[\Phi' + \frac{a'}{a} \Phi = -4\pi Ga^2 \cdot [(\rho + p)v]_{tot} \]

\[\Phi'' + 3 \frac{a'}{a} \Phi' + \left(2 \frac{a''}{a} - \frac{a'^2}{a^2} \right) \Phi = 4\pi Ga^2 \cdot \delta p_{tot} \]

Covariant conservation

\[\delta \rho' + 3 \frac{a'}{a} (\delta \rho + \delta p) + (\rho + p)(\Delta v - 3 \Phi') = 0 \]

\[[(\rho + p)v]' + 4 \frac{a'}{a} (\rho + p)v + \delta p + (\rho + p)\Phi = 0 , \]
Single component fluid

Master equation \((u_s^2 = w) \)

\[
\Phi'' + 3 \frac{a'}{a}(1 + u_s^2)\Phi' + \left[2 \frac{a''}{a} - \frac{a'^2}{a^2} (1 - 3u_s^2) \right] \Phi + u_s^2 k^2 \Phi = 0 .
\]

Perturbation in energy density:

\[
4\pi G a^2 \delta \rho = - \left(k^2 \Phi + 3 \frac{a'}{a} \Phi' + 3 \frac{a'^2}{a^2} \Phi \right)
\]
Growth of perturbations (linear regime)

Radiation domination

\(t_{eq} \)

\(t_{rec} \)

\(t_{\Lambda} \)

\(t \)

Matter domination

\(\delta_\gamma \)

\(\delta_{DM} \)

\(\delta_B \)

\(\Phi \)

\(\Lambda \) domination
Cosmology

V.A. Rubakov

Institute for Nuclear Research
of the Russian Academy of Sciences

Department of Particle Physics and Cosmology
Physics Faculty
Moscow State University
2. Cosmological perturbations I
 2.1 Generalities
 2.1.1 Perturbed metric. Gauge invariance.
 2.1.2 Perturbed energy-momentum tensor.
 2.2 Helicity decomposition
 2.3 Tensor modes
 2.3.1 Equation
 2.3.2 Regimes of evolution
 2.3.3 Solutions in superhorizon and subhorizon regimes. Matching.
 2.4 Digression: conformal times of recombination and radiation-matter equality
 2.5 Vector modes
Lectures 3, 4

3. Cosmological perturbations II

Lecture 3

3.1 Scalar modes

3.1.1 Conformal Newtonian gauge

3.1.2 Equations

3.1.3 Sample solutions: single component fluids

3.1.3.1 Master equation

3.1.3.2 Radiation

3.1.3.3 Matter

3.1.3.4 Matter at Λ-domination

3.1.2 Classification: adiabatic mode, entropy (isocurvature) modes
Lecture 4

3.2 Adiabatic mode

3.2.1 Initial condition: ζ

3.2.2 Summary of experimental results

3.2.3 Summary: at recombination

3.2.4 After recombination: BAO.
Cont’d

Lecture 5
4. Elements of theory of CMB temperature anisotropy
 4.1 Sachs–Wolfe, Doppler
 and integrated Sachs–Wolfe effects
 4.2 Large angular scales
 4.3 Intermediate angular scales
 4.4 What do we learn from CMB temperature anisotropy

Lecture 6
5. Elements of theory of CMB polarization
 5.1 More about photon last scattering
 5.2 Reionization
 5.2 Polarization from Thomson scattering
 5.3 E- and B-modes
 5.4 Effect of scalar perturbations
 5.4 Effect of tensor perturbations
Cont’d

Lectures 7, 8
6. Inflation
 6.1 Main idea
 6.2 Inflaton as a driver
 6.3 Generation of tensor perturbations
 6.4 Generation of scalar perturbations:
 inflaton mechanism
 6.5 Estimating non-Gaussianity
 6.6 Curvaton mechanism. Examples of non-Gaussianity
 6.7 Example of generation of entropy mode:
 axion misalignment

Lecture 9
7. Alternatives to inflation
 7.1 Bouncing Universe
 7.2 Genesis
 7.3 Generating scalar perturbations

8. Conclusions
Einstein:

\[-\Delta \Psi + 3 \frac{a'}{a} \Psi' - 3 \frac{a'^2}{a^2} \Phi = 4 \pi G a^2 \delta \rho_{tot} , \quad (1)\]

\[-\Psi' + \frac{a'}{a} \Phi = -4 \pi G a^2 [(\rho + p)v]_{tot} , \quad (2)\]

\[\Psi'' - \frac{1}{3} (\Delta \Phi + \Delta \Psi) + \frac{a'}{a} (2 \Psi' - \Phi') - 2 \frac{a''}{a} \Phi + \frac{a'^2}{a^2} \Phi = -4 \pi G a^2 [\delta p]_{tot} , \quad (3)\]

\[\Delta (\Phi + \Psi) = -12 \pi G a^2 [(\rho + p)\pi]_{tot} . \quad (4)\]

Covariant conservation:

\[\delta \rho' + 3 \frac{a'}{a} (\delta \rho + \delta p) + (\rho + p) (\Delta v + 3 \Psi') = 0 , \quad (5)\]

\[([(\rho + p)v]')' + \delta p + (\rho + p) \left(4 \frac{a'}{a} v + \pi + \Phi \right) = 0 . \quad (6)\]
Planck + all: Scalar tilt vs tensor power
BICEP-2 claim $r = 0.2$

$r = 0.2$ is large: 10% contribution to δT at low multipoles, $l \lesssim 30$.

BICEP2 and Planck with $dn_s/d \log k = -0.02$ (very large)
Inflation: $dn_s/d \log k \approx -0.001$

Planck + all
BAO in power spectrum

(a) 2dFGRS+SDSS main

(b) SDSS LRG

(c) all

\[\log_{10} \frac{P(k)}{P(k)_{\text{smooth}}} \]

\[k / h \text{ Mpc}^{-1} \]
BAO in correlation function
Cosmology

V.A. Rubakov

Institute for Nuclear Research
of the Russian Academy of Sciences

Department of Particle Physics and Cosmology
Physics Faculty
Moscow State University
Lecture 2

2. Cosmological perturbations I
 2.1 Generalities
 2.1.1 Perturbed metric. Gauge invariance.
 2.1.2 Perturbed energy-momentum tensor.
 2.2 Helicity decomposition
 2.3 Tensor modes
 2.3.1 Equation
 2.3.2 Regimes of evolution
 2.3.3 Solutions in superhorizon and subhorizon regimes. Matching.
 2.4 Digression: conformal times of recombination and radiation-matter equality
 2.5 Vector modes
Lectures 3, 4
3. Cosmological perturbations II
Lecture 3

3.1 Scalar modes
 3.1.1 Conformal Newtonian gauge
 3.1.2 Equations
 3.1.3 Sample solutions: single component fluids
 3.1.3.1 Master equation
 3.1.3.2 Radiation
 3.1.3.3 Matter
 3.1.3.4 Matter at Λ-domination
 3.1.2 Classification: adiabatic mode, entropy (isocurvature) modes
3.2 Adiabatic mode
 3.2.1 Initial condition: ζ
 3.2.2 Summary of experimental results
 3.2.3 Summary: at recombination
 3.2.4 After recombination: BAO.
Lecture 5
4. Elements of theory of CMB temperature anisotropy
 4.1 Sachs–Wolfe, Doppler and integrated Sachs–Wolfe effects
 4.2 Large angular scales
 4.3 Intermediate angular scales
 4.4 What do we learn from CMB temperature anisotropy
Lecture 6
5. Elements of theory of CMB polarization
 5.1 More about photon last scattering
 5.2 Reionization
 5.2 Polarization from Thomson scattering
 5.3 E- and B-modes
 5.4 Effect of scalar perturbations
 5.4 Effect of tensor perturbations
Lectures 7, 8

6. Inflation
 6.1 Main idea
 6.2 Inflaton as a driver
 6.3 Generation of tensor perturbations
 6.4 Generation of scalar perturbations:
 inflaton mechanism
 6.5 Estimating non-Gaussianity
 6.6 Curvaton mechanism. Examples of non-Gaussianity
 6.7 Example of generation of entropy mode:
 axion misalignment

Lecture 9

7. Alternatives to inflation
 7.1 Bouncing Universe
 7.2 Genesis
 7.3 Generating scalar perturbations

8. Conclusions
CMB temperature angular spectrum

Angular scale

Multipole moment, ℓ

$D_\ell [\mu K^2]$
Three contributions
Top. defects are not seeds for perturbations

\[l(l+1)C_l / 2\pi [\mu K^2] \]
Effects of adiabatic and entropy perturbations

adiabatic perturbations

entropy perturbation
Effect of baryons

$\Omega_b h^2 = 0.06$

$\Omega_b h^2 = 0.005$
Effect of curvature (left) and Λ
Einstein:

\[-\Delta \Psi + 3 \frac{a'}{a} \Psi' - 3 \frac{a'^2}{a^2} \Phi = 4\pi G a^2 \delta \rho_{tot} , \quad (1) \]

\[-\Psi' + \frac{a'}{a} \Phi = -4\pi G a^2 [(\rho + p)v]_{tot} , \quad (2) \]

\[\Psi'' - \frac{1}{3} (\Delta \Phi + \Delta \Psi) + \frac{a'}{a} (2\Psi' - \Phi') - 2 \frac{a''}{a} \Phi + \frac{a'^2}{a^2} \Phi = -4\pi G a^2 [\delta p]_{tot} , \quad (3) \]

\[\Delta (\Phi + \Psi) = -12\pi G a^2 [(\rho + p)\pi]_{tot} . \quad (4) \]

Covariant conservation:

\[\delta \rho' + 3 \frac{a'}{a} (\delta \rho + \delta p) + (\rho + p) (\Delta v + 3 \Psi') = 0 , \quad (5) \]

\[[(\rho + p)v]' + \delta p + (\rho + p) \left(4 \frac{a'}{a} v + \pi + \Phi \right) = 0 . \quad (6) \]
Tentative outline

Lecture 2
2. Cosmological perturbations I
 2.1 Generalities
 2.1.1 Perturbed metric. Gauge invariance.
 2.1.2 Perturbed energy-momentum tensor.
 2.2 Helicity decomposition
 2.3 Tensor modes
 2.3.1 Equation
 2.3.2 Regimes of evolution
 2.3.3 Solutions in superhorizon and subhorizon regimes. Matching.
 2.4 Digression: conformal times of recombination and radiation-matter equality
 2.5 Vector modes
Cont’d

Lectures 3, 4
3. Cosmological perturbations II
Lecture 3

3.1 Scalar modes
 3.1.1 Conformal Newtonian gauge
 3.1.2 Equations
 3.1.3 Sample solutions: single component fluids
 3.1.3.1 Master equation
 3.1.3.2 Radiation
 3.1.3.3 Matter
 3.1.3.4 Matter at Λ-domination
 3.1.2 Classification: adiabatic mode, entropy (isocurvature) modes
Lecture 4

3.2 Adiabatic mode
 3.2.1 Initial condition: ζ
 3.2.2 Summary of experimental results
 3.2.3 Summary: at recombination
 3.2.4 After recombination: BAO.
Lecture 5
4. Elements of theory of CMB temperature anisotropy
 4.1 Sachs–Wolfe, Doppler and integrated Sachs–Wolfe effects
 4.2 Large angular scales
 4.3 Intermediate angular scales
 4.4 What do we learn from CMB temperature anisotropy
Lecture 6
5. Elements of theory of CMB polarization
 5.1 Polarization in Thomson scattering
 5.2 More about photon last scattering
 5.3 Reionization
 5.4 Polarization tensor. E- and B-modes
 5.4 Effect of scalar perturbations
 5.4 Effect of tensor perturbations
Cont’d

Lectures 7, 8
6. Inflation
 6.1 Main idea
 6.2 Inflaton as a driver
 6.3 Generation of tensor perturbations
 6.4 Generation of scalar perturbations:
 inflaton mechanism
 6.5 Estimating non-Gaussianity
 6.6 Curvaton mechanism. Examples of non-Gaussianity
 6.7 Example of generation of entropy mode:
 axion misalignment

Lecture 9
7. Alternatives to inflation
 7.1 Bouncing Universe
 7.2 Genesis
 7.3 Generating scalar perturbations

8. Conclusions
WMAP polarization sky
Planck polarization spots
WMAP cross correlation spectrum TE
Effects of scalar (left) and tensor (right) perturbations.
Cosmology

V.A. Rubakov

Institute for Nuclear Research
of the Russian Academy of Sciences

Department of Particle Physics and Cosmology
Physics Faculty
Moscow State University
Tentative outline

Lecture 2
2. Cosmological perturbations I
 2.1 Generalities
 2.1.1 Perturbed metric. Gauge invariance.
 2.1.2 Perturbed energy-momentum tensor.
 2.2 Helicity decomposition
 2.3 Tensor modes
 2.3.1 Equation
 2.3.2 Regimes of evolution
 2.3.3 Solutions in superhorizon and subhorizon regimes. Matching.
 2.4 Digression: conformal times of recombination and radiation-matter equality
 2.5 Vector modes
Lectures 3,4
3. Cosmological perturbations II
Lecture 3

3.1 Scalar modes
 3.1.1 Conformal Newtonian gauge
 3.1.2 Equations
 3.1.3 Sample solutions: single component fluids
 3.1.3.1 Master equation
 3.1.3.2 Radiation
 3.1.3.3 Matter
 3.1.3.4 Matter at Λ-domination
 3.1.2 Classification: adiabatic mode, entropy (isocurvature) modes
Lecture 4

3.2 Adiabatic mode
 3.2.1 Initial condition: ζ
 3.2.2 Summary of experimental results
 3.2.3 Summary: at recombination
 3.2.4 After recombination: BAO.
Cont’d

Lecture 5
4. Elements of theory of CMB temperature anisotropy
 4.1 Sachs–Wolfe, Doppler
 and integrated Sachs–Wolfe effects
 4.2 Large angular scales
 4.3 Intermediate angular scales
 4.4 What do we learn from CMB temperature anisotropy
Lecture 6
5. Elements of theory of CMB polarization
 5.1 Polarization in Thomson scattering
 5.2 More about photon last scattering
 5.3 Reionization
 5.4 Polarization tensor. E- and B-modes
 5.4 Effect of scalar perturbations
 5.4 Effect of tensor perturbations
Lecture 7
6. Inflation

6.1 Main idea
6.2 Inflaton as a driver
6.3 Generation of tensor perturbations
6.4 Generation of scalar perturbations:
inflaton mechanism
Lecture 8
Inflation

6.5 Estimating non-Gaussianity
6.6 Curvaton mechanism. Examples of non-Gaussianity
6.7 Example of generation of entropy mode:
 axion misalignment

Lecture 9
7. Alternatives to inflation
 7.1 Bouncing Universe
 7.2 Genesis
 7.3 Generating scalar perturbations

8. Conclusions
Slow roll

Equations

\[3H \dot{\phi} = -V' \]

\[H^2 = \frac{8\pi}{3} \frac{V}{M_{Pl}^2} \]

Parameters

\[\varepsilon = \frac{V'^2 M_{Pl}^2}{16\pi V^2} \]

\[\eta = \frac{V'' M_{Pl}^2}{8\pi V} \]
Cosmology

V.A. Rubakov

Institute for Nuclear Research of the Russian Academy of Sciences

Department of Particle Physics and Cosmology
Physics Faculty
Moscow State University
Tentative outline

Lecture 2
2. Cosmological perturbations I
 2.1 Generalities
 2.1.1 Perturbed metric. Gauge invariance.
 2.1.2 Perturbed energy-momentum tensor.
 2.2 Helicity decomposition
 2.3 Tensor modes
 2.3.1 Equation
 2.3.2 Regimes of evolution
 2.3.3 Solutions in superhorizon and subhorizon regimes. Matching.
 2.4 Digression: conformal times of recombination and radiation-matter equality
 2.5 Vector modes
Lectures 3, 4
3. Cosmological perturbations II
Lecture 3

3.1 Scalar modes
 3.1.1 Conformal Newtonian gauge
 3.1.2 Equations
 3.1.3 Sample solutions: single component fluids
 3.1.3.1 Master equation
 3.1.3.2 Radiation
 3.1.3.3 Matter
 3.1.3.4 Matter at Λ-domination
 3.1.2 Classification: adiabatic mode, entropy (isocurvature) modes
Lecture 4

3.2 Adiabatic mode
 3.2.1 Initial condition: ζ
 3.2.2 Summary of experimental results
 3.2.3 Summary: at recombination
 3.2.4 After recombination: BAO.
Cont’d

Lecture 5
4. Elements of theory of CMB temperature anisotropy
 4.1 Sachs–Wolfe, Doppler
 and integrated Sachs–Wolfe effects
 4.2 Large angular scales
 4.3 Intermediate angular scales
 4.4 What do we learn from CMB temperature anisotropy
Lecture 6
5. Elements of theory of CMB polarization
 5.1 Polarization in Thomson scattering
 5.2 More about photon last scattering
 5.3 Reionization
 5.4 Polarization tensor. E- and B-modes
 5.4 Effect of scalar perturbations
 5.4 Effect of tensor perturbations
Lecture 7
6. Inflation

6.1 Main idea
6.2 Inflaton as a driver
6.3 Generation of tensor perturbations
6.4 Generation of scalar perturbations:
 inflaton mechanism
Lecture 8
Inflation, part 2

6.5 Single field: estimating non-Gaussianity
6.6 Single field: eternal inflation
6.7 Curvaton mechanism. Examples of non-Gaussianity and entropy modes
6.8 Comments on reheating
Lecture 9

7. Alternatives to inflation
 7.1 Bouncing Universe
 7.2 Genesis
 7.3 Generating scalar perturbations

8. Conclusions
Cosmology

V.A. Rubakov

Institute for Nuclear Research
of the Russian Academy of Sciences

Department of Particle Physics and Cosmology
Physics Faculty
Moscow State University
Tentative outline

Lecture 2
2. Cosmological perturbations I
 2.1 Generalities
 2.1.1 Perturbed metric. Gauge invariance.
 2.1.2 Perturbed energy-momentum tensor.
 2.2 Helicity decomposition
 2.3 Tensor modes
 2.3.1 Equation
 2.3.2 Regimes of evolution
 2.3.3 Solutions in superhorizon and subhorizon regimes. Matching.
 2.4 Digression: conformal times of recombination and radiation-matter equality
 2.5 Vector modes
Lectures 3,4
3. Cosmological perturbations II
Lecture 3

3.1 Scalar modes
3.1.1 Conformal Newtonian gauge
3.1.2 Equations
3.1.3 Sample solutions: single component fluids
 3.1.3.1 Master equation
 3.1.3.2 Radiation
 3.1.3.3 Matter
 3.1.3.4 Matter at Λ-domination
3.1.2 Classification: adiabatic mode, entropy (isocurvature) modes
Lecture 4

3.2 Adiabatic mode
 3.2.1 Initial condition: \(\zeta \)
 3.2.2 Summary of experimental results
 3.2.3 Summary: at recombination
 3.2.4 After recombination: BAO.
Cont’d

Lecture 5
4. Elements of theory of CMB temperature anisotropy
 4.1 Sachs–Wolfe, Doppler
 and integrated Sachs–Wolfe effects
 4.2 Large angular scales
 4.3 Intermediate angular scales
 4.4 What do we learn from CMB temperature anisotropy
Lecture 6
5. Elements of theory of CMB polarization
 5.1 Polarization in Thomson scattering
 5.2 More about photon last scattering
 5.3 Reionization
 5.4 Polarization tensor. E- and B-modes
 5.4 Effect of scalar perturbations
 5.4 Effect of tensor perturbations
Lecture 7
6. Inflation

6.1 Main idea
6.2 Inflaton as a driver
6.3 Generation of tensor perturbations
6.4 Generation of scalar perturbations: inflaton mechanism
Lecture 8
Inflation, part 2

6.5 Single field: estimating non-Gaussianity
6.6 Single field: eternal inflation
6.7 Curvaton mechanism. Examples of non-Gaussianity and entropy modes
6.8 Comments on reheating
Lecture 9
7. Alternatives to inflation
 7.1 Null Energy Condition and its violation
 7.2 Galilean Genesis
 7.3 Contracting Universe: Belinsky–Lifshits–Khalatnikov problem and way out
 7.4 Generating scalar perturbations: conformal models

8. Overall conclusions
1. Consider single field inflation in slow roll regime, at which the slow roll parameter ε decreases in time. Take any inflaton potential consistent with the CMB and galaxy distribution data. Show that during the period at inflation, which is responsible for generating the adiabatic perturbations, the inflaton field rolls down at least by

$$\Delta \phi \gtrsim 10r \cdot M_{Pl},$$

where r is the tensor-to-scalar ratio. [This means, in particular, that the discovery of tensor modes with $r \sim 0.2$, as originally claimed by BICEP-2, would imply that the variation of the inflaton over the relevant period of time at inflationary epoch was super-Planckian.]
2. Relatively short gravity waves, created at inflation, after horizon re-entry at radiation domination can be viewed as a collection of gravitons (just like electromagnetic waves emitted by antenna can be viewed as a collection of photons). Assuming that the Hubble parameter H some 60 e-foldings before inflation end is known, calculate the average (over ensemble of universes) number of gravitons $\langle N(k, \Delta k) \rangle$ in the present visible Universe in the interval of momenta from k/a_0 to $(k + \Delta k)/a_0$, and relative variance of this number

$$\sqrt{\langle N^2(k, \Delta k) \rangle - \langle N(k, \Delta k) \rangle^2 \langle N(k, \Delta k) \rangle}.$$

Dropping the assumption about the value of the Hubble parameter, calculate these quantities for the inflaton potential $V = m^2 \phi^2 / 2$. Give numerical estimates in the latter case for $k/a_0 = 1 \text{ Mpc}^{-1}$, $\Delta k = k$.
3. Consider Minkowski space and generalized Galileon theory with the Lagrangian

\[L = e^{4\pi} F(Y) + e^{2\pi} K(Y) \Box \pi \]

where

\[Y = e^{-2\pi} (\partial \pi)^2. \]

Let \(F \) and \(K \) be chosen in such a way that there is a solution

\[e^\pi = \frac{\text{const}}{-t}, \quad t < 0. \]

Let this solution be healthy, i.e., there are neither ghosts nor gradient instabilities among preturbations about this solution. Find the power spectrum of perturbations \(\delta \pi \) about this solution in the regime \(k|t| \ll 1 \), where \(k \) is the spatial momentum of a mode.