Aspects of string phenomenology in the LHC era

I. Antoniadis

Workshop on Supersymmetry, Quantum Gravity and Gauge Fields
Pisa - Italy, 12-14 September 2012

- High string scale, SUSY and 125 GeV Higgs
- Low scale strings and extra dimensions
- Extra $U(1)$'s
- Tiny string coupling and linear dilaton background
Connect string theory to the real world:

What is the value of the string scale \(M_s \)?

- arbitrary parameter: Planck mass \(M_P \rightarrow \) TeV

- physical motivations \(\Rightarrow \) favored energy regions:

 - **High**: \(M_P^* \approx 10^{18} \text{ GeV} \) \(M_{\text{GUT}} \approx 10^{16} \text{ GeV} \)
 - Heterotic scale
 - Unification scale

 - **Intermediate**: around \(10^{11} \text{ GeV} \) \((M_s^2/M_P \sim \text{TeV}) \)
 - SUSY breaking, strong CP axion, see-saw scale

 - **Low**: TeV \((\text{hierarchy problem}) \)
Beyond the Standard Model of Particle Physics:
driven by the mass hierarchy problem

Standard picture: low energy supersymmetry

Natural framework: Heterotic string (or high-scale M/F) theory

Advantages:
- natural elementary scalars
- gauge coupling unification
- LSP: natural dark matter candidate
- radiative EWSB

Problems:
- too many parameters: soft breaking terms
- MSSM: already a % - %₀ fine-tuning ‘little’ hierarchy problem
CMS Total Integrated Luminosity, p-p

- 2010, $\sqrt{s} = 7$ TeV
- 2011, $\sqrt{s} = 7$ TeV
- 2012, $\sqrt{s} = 8$ TeV

Time in year

Total Integrated Luminosity (fb$^{-1}$)
$m_H = 126 \pm 0.4 \, \text{(stat.)} \pm 0.4 \, \text{(syst.)}$

$5.9 \, \sigma$

$m_H = 125.3 \pm 0.4 \pm 0.5 \, \text{GeV}$

$5 \, \sigma \, \text{significance}$
some remarks

Higgs-like particle discovery around 125 GeV:

- consistent with expectation from precision tests of the SM
- favors perturbative physics quartic coupling $\lambda = \frac{m_H^2}{v^2} \approx 1/8$

If confirmed:

- supersymmetry becomes ‘severely’ fine-tuned, in its minimal version
- but still early to draw a general conclusion before LHC13/14
 an extra singlet or split families can remediate the fine tuning to $\lesssim 10$
- very important to measure Higgs couplings $^{[8]}$
 any deviation of its couplings to top, bottom and EW gauge bosons
 implies new light states involved in the EWSB altering the fine-tuning
Δα_{had}^{(5)} = 0.02761 ± 0.00036
Couplings of the new boson vs SM Higgs

Agreement with Standard Model Higgs expectation at 1.5 σ
ATLAS SUSY Searches* - 95% CL Lower Limits (Status: ICHEP 2012)

\[\int L dt = (0.03 - 4.8) \, fb^{-1} \]
\[\sqrt{s} = 7 \, TeV \]

ATLAS Preliminary

Only a selection of the available mass limits on new states or phenomena shown.
Can the SM be valid at high energies?

Instability of the SM Higgs potential \Rightarrow metastability of the EW vacuum
Dropping the hierarchy motivation...

Next scale of new physics at $M_I \sim 10^{11}$ GeV?

- Dark Matter \rightarrow could be an axion
- Unification \rightarrow perhaps different realization
- What could be the physics at M_I? \rightarrow susy, string scale, ...
If the weak scale is tuned \Rightarrow split supersymmetry is a possibility

Arkani Hamed-Dimopoulos '04, Giudice-Romaninio '04

- natural splitting: gauginos, higgsinos carry R-symmetry, scalars do not
- main good properties of SUSY are maintained
 - gauge coupling unification and dark matter candidate
- also no dangerous FCNC, CP violation, . . .
- experimentally allowed Higgs mass \Rightarrow 'moderate' split

$m_S \sim \text{few - thousands TeV}$

gauginos: a loop factor lighter than scalars ($\sim m_{3/2}$)

- natural string framework: intersecting (or magnetized) branes

IA-Dimopoulos '04

D-brane stacks are supersymmetric with massless gauginos

intersections have chiral fermions with broken SUSY & massive scalars
Predicted range for the Higgs mass

- Split SUSY
- High-Scale SUSY
- Experimentally favored

Higgs mass m_h in GeV vs. Supersymmetry breaking scale in GeV

- $\tan\beta = 50$
- $\tan\beta = 4$
- $\tan\beta = 2$
- $\tan\beta = 1$
Alternative answer: Low UV cutoff $\Lambda \sim \text{TeV}$

- low scale gravity \Rightarrow extra dimensions: large flat or warped
- low string scale \Rightarrow low scale gravity, ultra weak string coupling

Experimentally testable framework:

- spectacular model independent predictions
- radical change of high energy physics at the TeV scale

Moreover no little hierarchy problem:

radiative electroweak symmetry breaking with no logs

$\Lambda \sim \text{a few TeV}$ and $m_H^2 = \text{a loop factor} \times \Lambda^2$ \cite{17}

But unification has to be probably dropped

New Dark Matter candidates e.g. in the extra dims
Framework of type I string theory \Rightarrow D-brane world

I.A.-Arkani-Hamed-Dimopoulos-Dvali '98

- gravity: closed strings propagating in 10 dims
- gauge interactions: open strings with their ends attached on D-branes

Dimensions of finite size: n transverse $6 - n$ parallel

Calculability $\Rightarrow R_{||} \simeq l_{\text{string}}$; R_{\perp} arbitrary

\[
M_P^2 \simeq \frac{1}{g_s^2} M_s^{2+n} R_{\perp}^n
\]

$g_s = \alpha$: weak string coupling

Planck mass in $4 + n$ dims: M_{*}^{2+n}

\[
M_s \sim 1 \text{ TeV} \Rightarrow R_{\perp}^n = 10^{32} l_s^n \quad [33]
\]

small M_s/M_P: extra-large R_{\perp}

\[
R_{\perp} \sim .1 - 10^{-13} \text{ mm for } n = 2 - 6
\]

distances $< R_{\perp}$: gravity $(4+n)$-dim \rightarrow strong at 10^{-16} cm
Origin of EW symmetry breaking?

possible answer: radiative breaking

$$V = \mu^2 H^\dagger H + \lambda (H^\dagger H)^2$$

$$\mu^2 = 0 \text{ at tree but becomes } < 0 \text{ at one loop}$$

non-susy vacuum

simplest case: one scalar doublet from the same brane

$$\Rightarrow \text{tree-level } V \text{ same as susy: } \lambda = \frac{1}{8}(g_2^2 + g'^2)$$

D-terms

$$\mu^2 = -g^2 \varepsilon^2 M_s^2 \leftarrow \text{effective UV cutoff}$$

$$\varepsilon^2(R) = \frac{R^3}{2\pi^2} \int_0^\infty d\ell^{3/2} \frac{\theta_2^4}{16\ell^4\eta^{12}} \left(i\ell + \frac{1}{2} \right) \sum_n n^2 e^{-2\pi n^2 R^2\ell}$$
$R \rightarrow 0 : \varepsilon(R) \approx 0.14$ \quad large \ transverse \ dim \quad R_\perp = l_s^2/R \rightarrow \infty$

$R \rightarrow \infty : \varepsilon(R)M_s \sim \varepsilon_\infty/R \quad \varepsilon_\infty \approx 0.008$ \quad UV \ cutoff: \quad M_s \rightarrow 1/R$

Higgs scalar = component of a higher dimensional gauge field

$\Rightarrow \varepsilon_\infty$ calculable in the effective field theory
Quartic coupling \Rightarrow mass prediction:

- tree level: $M_H = M_Z$

- low-energy SM radiative corrections (from top quark): $M_H \sim 120$ GeV

 Casas-Espinosa-Quiros-Riotto, Carena-Espinosa-Quiros-Wagner ’95

Increasing $\lambda \rightarrow g^2/4 \sim 1/8 \Rightarrow M_H \sim v/2 = 125$ GeV

Also M_s or $1/R \sim$ a few or several TeV
Gravitational radiation in the bulk \Rightarrow missing energy

Angular distribution \Rightarrow spin of the graviton

<table>
<thead>
<tr>
<th>Collider bounds on R_\perp in mm</th>
<th>$n = 2$</th>
<th>$n = 4$</th>
<th>$n = 6$</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEP 2</td>
<td>4.8×10^{-1}</td>
<td>1.9×10^{-8}</td>
<td>6.8×10^{-11}</td>
</tr>
<tr>
<td>Tevatron</td>
<td>5.5×10^{-1}</td>
<td>1.4×10^{-8}</td>
<td>4.1×10^{-11}</td>
</tr>
<tr>
<td>LHC</td>
<td>4.5×10^{-3}</td>
<td>5.6×10^{-10}</td>
<td>2.7×10^{-12}</td>
</tr>
</tbody>
</table>

present LHC bounds: $M_\star \gtrsim 2.5 - 4$ TeV
Micro-black hole production?

String-size black hole energy threshold: $M_{\text{BH}} \sim M_s/g_s^2$

Horowitz-Polchinski '96, Meade-Randall '07

weakly coupled theory \Rightarrow strong gravity effects occur much above M_s, M_*

$g_s \sim 0.1$ (gauge coupling) \Rightarrow $M_{\text{BH}} \sim 100M_s$

Comparison with Regge excitations: $M_j = M_s \sqrt{j}$ \Rightarrow

production of $j \sim 1/g_s^4 \sim 10^4$ string states before reach M_{BH}
Other accelerator signatures: 3 different scales

- string physics

 Massive string vibrations ⇒ e.g. resonances in dijet distribution

 \[M_j^2 = M_0^2 + M_s^2 j \quad ; \quad \text{maximal spin: } j + 1 \]

 higher spin excitations of quarks and gluons with strong interactions

- Large TeV dimensions seen by SM gauge interactions

 ⇒ KK resonances of SM gauge bosons

 \[M_k^2 = M_0^2 + \frac{k^2}{R^2} \quad ; \quad k = \pm 1, \pm 2, \ldots \quad R = V_1^{1/d} \quad ; \quad g^2 = 1/(V_1 M_s^{d}) \]

 experimental limits: \(R^{-1} \gtrsim 0.5 - 4 \text{ TeV} \) (UED - localized fermions)

- extra \(U(1)'s \) and anomaly induced terms

 masses suppressed by a loop factor from \(M_s \) \(^{[24]}\)
Universal deviation from Standard Model in dijet distribution

$M_s = 2$ TeV

Width $= 15-150$ GeV

Anchordoqui-Goldberg-Lüst-Nawata-Taylor-Stieberger '08

present LHC limits: $M_s \gtrsim 4.5$ TeV
Extra $U(1)$’s and anomaly induced terms

masses suppressed by a loop factor

usually associated to known global symmetries of the SM

(anomalous or not) such as (combinations of)

Baryon and Lepton number, or PQ symmetry

Two kinds of massive $U(1)$’s: I.A.-Kiritsis-Rizos ’02

- 4d anomalous $U(1)$’s: $M_A \simeq g_A M_s$

- 4d non-anomalous $U(1)$’s: (but masses related to 6d anomalies)

$$M_{NA} \simeq g_A M_s V_2 \leftarrow (6d\to4d)\text{ internal space} \quad \Rightarrow M_{NA} \geq M_A$$

or massless in the absence of such anomalies
Standard Model on D-branes: SM^{++}

$\text{Sp}(1) \equiv SU(2)$

$U(1)_L$ (Leptonic)

$U(1)_R$, D_R (Baryonic)

1-Right

U(3)

2-Left

Q_L

W

gluon

$SU(2)$ global

$I. \text{ Antoniadis} \ (\text{CERN})$
B and L become massive due to anomalies

Green-Schwarz terms

the global symmetries remain in perturbation

- Baryon number \Rightarrow proton stability
- Lepton number \Rightarrow protect small neutrino masses

no Lepton number \Rightarrow \(\frac{1}{M_s} LLHH \rightarrow \text{Majorana mass: } \frac{\langle H \rangle^2}{M_s} LL \sim \text{GeV} \)

$B, L \Rightarrow$ extra Z's

with possible leptophobic couplings leading to CDF-type Wjj events

$Z' \sim B$ lighter than 4d anomaly free $Z'' \sim B - L$
$Z' \simeq B$ anomalous and superheavy

$Z'' \simeq B - L$ massless at the string scale (no associated 6d anomaly)

but broken at TeV by a Higgs VEV with the quantum numbers of N_R

L-violation from higher-dim operators suppressed by the string scale

$U(3)$ unification, Y combination \Rightarrow 2 parameters: 1 coupling $+ m_{Z''}$

perturbativity $\Rightarrow 0.5 \lesssim g_{U(1)_R} \lesssim 1$

present LHC limits: $m_{Z''} \gtrsim 3 - 4$ TeV (for $Z'' \simeq B - L$ or $U(1)_R$)

interesting LHC phenomenology and cosmology
Rotation of $U(1)$’s from the string to low energy basis Y, Y', Y'': completely fixed in terms of the couplings

- Decoupling of anomalous Y'
- Y'' linear combination of $B - L$ and $U(1)_R$

LHC14 discovery potential: $M_{Z''}$ up to ~ 5 TeV

Recent cosmological observations indicate an extra relativistic component dark radiation parametrized by an effective neutrino number close to 4 → use the 3 ν_R’s interacting with SM fermions via Z''

data: their decoupling during the quark-hadron transition

$$3.5 \lesssim M_{Z''} \lesssim 7 \text{ TeV}$$
The diagram shows the relationship between $g'_1(M_s)$ and BR Z'' for the $U(1)_R$ and $B - L$ sectors. The axes are labeled as follows:

- **Y-axis (Vertical):** BR Z''
- **X-axis (Horizontal):** $g'_1(M_s)$

The curves indicate the behavior of BR Z'' as $g'_1(M_s)$ varies, with distinct patterns for each sector.
Stability analysis in (non-susy) SM$^{++}$

Scalar potential:

\[V(H, H'') = \mu^2 |H|^2 + \mu'^2 |H''|^2 + \lambda_1 |H|^4 + \lambda_2 |H''|^4 + \lambda_3 |H|^2 |H''|^2 \]

5 parameters $\Rightarrow v, m_h, v'', m_{h''} +$ a Higgs mixing angle α

\Rightarrow 3 free parameters : $m_{h''}, \alpha, v'' \leftrightarrow M_{Z''}$

Stability conditions: $\lambda_1 > 0, \quad \lambda_2 > 0, \quad \lambda_1 \lambda_2 > \frac{1}{4} \lambda_3^2$

RGE analysis up to $M_s \Rightarrow$ stability is possible in SM$^{++}$

for $0.05 \lesssim \alpha \lesssim 0.35$ and $500 \text{ GeV} \lesssim m_{h''} \lesssim 5 \text{ TeV}$
$M_{Z''} = 4.5$ TeV; $M_s = 10^{14}, 10^{16}, 10^{19}$ GeV
\(M_s = 10^{16} \) GeV; \(M_{Z''} = 6, 4.5, 3.5 \) TeV
More general framework: large number of species

\(N \) particle species \(\Rightarrow \) lower quantum gravity scale: \(M_*^2 = \frac{M_p^2}{N} \)

Dvali ’07, Dvali, Redi, Brustein, Veneziano, Gomez, Lüst ’07-’10
derivation from: black hole evaporation or quantum information storage

\(M_* \simeq 1 \text{ TeV} \Rightarrow N \sim 10^{32} \) particle species!

2 ways to realize it lowering the string scale

1. Large extra dimensions \(\text{SM on D-branes} \) [16]

\[N = R^n \perp l^n_s : \text{number of KK modes up to energies of order } M_* \simeq M_s \]

2. Effective number of string modes contributing to the BH bound

\[N = \frac{1}{g_s^2} \text{ with } g_s \simeq 10^{-16} \text{ SM on NS5-branes} \]

I.A.-Pioline ’99, I.A.-Dimopoulos-Giveon ’01
Gauge/Gravity duality \(\Rightarrow \) toy 5d bulk model

Gravity background: near horizon geometry (holography) \(\rightarrow \) Maldacena '98

Analogy from D3-branes: \(AdS_5 \)

NS-5 branes: \((M_6 \otimes \mathbb{R}_+) \uparrow \)

linear dilaton background in 5d flat string-frame metric \(\Phi = -\alpha |y| \)

Aharony-Berkooz-Kutasov-Seiberg '98

"cut" the space of the extra dimension \(\Rightarrow \) gravity on the brane

\[
S_{\text{bulk}} = \int d^4x \int_0^{r_c} dy \sqrt{-g} \ e^{-\Phi} \left(M_5^3 R + M_5^3 (\nabla \Phi)^2 - \Lambda \right)
\]

\[
S_{\text{vis(hid)}} = \int d^4x \sqrt{-g} \ (e^{-\Phi}) \left(L_{SM(hid)} - T_{\text{vis(hid)}} \right)
\]

Tuning conditions: \(T_{\text{vis}} = -T_{\text{hid}} \leftrightarrow \Lambda < 0 \) \[36\]}
Constant dilaton and AdS metric: Randal Sundrum model

spacetime = slice of AdS$_5$:

\[ds^2 = e^{-2k|y|} \eta_{\mu\nu} dx^\mu dx^\nu + dy^2 \]

\[k^2 \sim \Lambda / M_5^3 \]

- **UV-brane** \(y = 0 \)
- **bulk** \(-|\Lambda| \)
- **IR-brane** \(y = \pi r_c \)

- Exponential hierarchy:
 \[M_W = M_P e^{-2kr_c} \]
 \[M_P^2 \sim M_5^3 / k \]
 \[M_5 \sim M_{GUT} \]

- 4d gravity localized on the UV-brane, but KK gravitons on the IR

\[m_n = c_n k e^{-2kr_c} \sim \text{TeV} \]

\[c_n \approx (n + 1/4) \text{ for large } n \]

\(\Rightarrow \) spin-2 TeV resonances in di-lepton or di-jet channels
dilaton $\Phi = -\alpha |y|$ and flat metric \Rightarrow

$$g_s^2 = e^{-\alpha |y|} ; \quad ds^2 = e^{\frac{2}{3}\alpha |y|}(\eta_{\mu\nu} dx^\mu dx^\nu + dy^2) \quad \leftarrow \text{Einstein frame}$$

$$z \sim e^{\alpha y/3} \Rightarrow \text{polynomial warp factor + log varying dilaton}$$

- exponential hierarchy: $g_s^2 = e^{-\alpha |y|}$, $M_P^2 \sim \frac{M_5^3}{\alpha} e^{\alpha r_c}$, $\alpha \equiv k_{RS}$

- 4d graviton flat, KK gravitons localized near SM
LST KK graviton phenomenology

- KK spectrum: \[m_n^2 = \left(\frac{n \pi}{r_c} \right)^2 + \frac{\alpha^2}{4} ; \ n = 1, 2, \ldots \]
 \[\Rightarrow \text{mass gap + dense KK modes} \quad \alpha \sim 1 \ \text{TeV} \quad r_c^{-1} \sim 30 \ \text{GeV} \]

- couplings: \[\frac{1}{\Lambda_n} \sim \frac{1}{(\alpha r_c) M_5} \]
 \[\Rightarrow \text{extra suppression by a factor} \ (\alpha r_c) \sim 30 \]

- width: \[1/(\alpha r_c)^2 \text{ suppression} \sim 1 \ \text{GeV} \]
 \[\Rightarrow \text{narrow resonant peaks in di-lepton or di-jet channels} \]

- extrapolates between RS and flat extra dims \((n = 1)\)
 \[\Rightarrow \text{distinct experimental signals} \]
Conclusions

- Possible discovery of the Higgs scalar at the LHC: big step forward
- Precise measurement of its couplings is of primary importance
- Hint on the origin of mass hierarchy and of BSM physics
 - Natural or unnatural SUSY?
 - Low string scale in some realization?
 - Something new and unexpected?
- Good chance that next phase of LHC run will provide the answer