On $D = 4$ Stationary Black Holes

Mario Trigiante

Dipartimento DISAT
Politecnico di Torino

May 16, 2013

Based on:

Outline

1. Black Holes in Extended $D = 4$ (Symmetric) Supergravity
2. The Global Symmetry in $D = 3$ and Orbits
3. Singular Limits to Regular Extremal Solutions
4. The Issue of Nilpotent Orbits and an Example
5. Conclusions
Stationary, asymptotically Flat Black Holes in D=4 SUGRAS

Supergravity bosonic field content

- n_S scalar fields ϕ^r
- n_V vector fields A^Λ_μ
- Graviton $g_{\mu\nu}$
Stationary, asymptotically Flat Black Holes in D=4 SUGRAS

Supergravity bosonic field content

- n_S scalar fields ϕ^r
- n_V vector fields A_μ^Λ
- Graviton $g_{\mu\nu}$

$D = 3$ description of $D = 4$ stationary solutions

- Metric: $ds^2 = -e^{2U} \left(dt + B_i^0 \, dx^i \right)^2 + e^{-2U} \, g_{ij} \, dx^i \, dx^j$
Supergravity bosonic field content

- n_S scalar fields ϕ^r
- n_V vector fields A^Λ_{μ}
- Graviton $g_{\mu\nu}$

$D = 3$ description of $D = 4$ stationary solutions

- Metric: $ds^2 = -e^{2U} (dt + B^0_i \, dx^i)^2 + e^{-2U} \, g_{ij} \, dx^i dx^j$
- Solution to a $D = 3$ Euclidean theory obtained from time-reduction from the $D = 4$ one (Breitenlohner, Gibbons, Maison)
Stationary, asymptotically Flat Black Holes in D=4 SUGRAS

Supergravity bosonic field content

\(n_S \) scalar fields \(\phi^r \); \(n_V \) vector fields \(A^\Lambda_{\mu} \); Graviton \(g_{\mu\nu} \)

D = 3 description of D = 4 stationary solutions

- Metric: \(ds^2 = -e^{2U} (dt + B^0_i dx^i)^2 + e^{-2U} g_{ij} dx^i dx^j \)
- Solution to a \(D = 3 \) Euclidean theory obtained from time-reduction from the \(D = 4 \) one (Breitenlohner, Gibbons, Maison)
- Dualizing in \(D = 3 \) vectors into scalars we end up with a sigma model describing \(n = 2 + n_S + 2n_V \) scalars \(\phi^I \) coupled to gravity
Stationary, asymptotically Flat Black Holes in D=4 SUGRAS

Supergravity bosonic field content

\(n_S \) scalar fields \(\phi^r \); \(n_V \) vector fields \(A^\Lambda_\mu \); Graviton \(g_{\mu\nu} \)

\(D = 3 \) description of \(D = 4 \) stationary solutions

- Metric: \(ds^2 = -e^{2U} (dt + B_0^i dx^i)^2 + e^{-2U} g_{ij} dx^i dx^j \)
- Solution to a \(D = 3 \) Euclidean theory obtained from time-reduction from the \(D = 4 \) one (Breitenlohner, Gibbons, Maison)
- Dualizing in \(D = 3 \) vectors into scalars we end up with a sigma model describing \(n = 2 + n_S + 2n_V \) scalars \(\phi^I \) coupled to gravity

\[
e^{-1} L = \frac{R_3}{2} - \frac{1}{2} G_{IJ}(\phi) \partial_i \phi^I \partial^i \phi^J \Rightarrow (\phi^I) \in \mathcal{M}^{(3)}_{\text{scal}} = \frac{G}{H}
\]

\(\mathcal{M}^{(3)}_{\text{scal}} = \frac{G}{H} \) is pseudo-Riemannian (indefinite signature), \(H \subset G \) is non-compact semisimple.
Stationary, asymptotically Flat Black Holes in D=4 SUGRAS

Supergravity bosonic field content

- n_S scalar fields ϕ^r;
- n_V vector fields A^Λ_μ;
- Graviton $g_{\mu\nu}$

D = 3 description of D = 4 stationary solutions

- Metric: $ds^2 = -e^{2U} (dt + B^0_i dx^i)^2 + e^{-2U} g_{ij} dx^i dx^j$
- Solution to a $D = 3$ Euclidean theory obtained from time-reduction from the $D = 4$ one (Breitenlohner, Gibbons, Maison)
- Dualizing in $D = 3$ vectors into scalars we end up with a sigma model describing $n = 2 + n_S + 2n_V$ scalars ϕ^I coupled to gravity:

\[
e^{-1} \mathcal{L} = \frac{R_3}{2} - \frac{1}{2} G_{I\bar{J}}(\phi) \partial_i \phi^I \partial^i \phi^{\bar{J}} \Rightarrow (\phi^I) \in \mathcal{M}^{(3)}_{\text{scal}} = \frac{G}{H}
\]

$\mathcal{M}^{(3)}_{\text{scal}} = \frac{G}{H}$ is pseudo-Riemannian (indefinite signature), $H \subset G$ is non-compact semisimple.

- Spherical symmetry: $\phi^I = \phi^I(\tau)$, solution is a geodesic on $\mathcal{M}^{(3)}_{\text{scal}}$
Geodesic uniquely defined by initial point \(\phi^I_0 = \phi^I(\tau = 0) \) and initial velocity \(Q \in T_{\phi_0}(G/H) \)
Geodesic uniquely defined by initial point $\phi^I_0 = \phi^I(\tau = 0)$ and initial velocity $Q \in T_{\phi_0}(G/H)$
Geodesic uniquely defined by initial point \(\phi_0^I = \phi^I(\tau = 0) \) and initial velocity \(Q \in T_{\phi_0}(G/H) \)

Isometry group \(G \) is the global symmetry of the \(D = 3 \) theory

Action of \(G \) on a geodesic \((\phi_0, Q)\)

Fix \(\phi_0 \equiv 0 \), \(G \)-orbit of geodesic is \(H \)-orbit of \(Q \in T_0 \)
• Geodesic uniquely defined by initial point $\phi^I_0 = \phi^I(\tau = 0)$ and initial velocity $Q \in T_{\phi_0}(G/H)$

• Isometry group G is the global symmetry of the $D = 3$ theory

• Action of G on a geodesic (ϕ_0, Q)

• Fix $\phi_0 \equiv 0$, G-orbit of geodesic is H-orbit of $Q \in T_0$
Geodesic uniquely defined by initial point $\phi_0^I = \phi^I(\tau = 0)$ and initial velocity $Q \in T_{\phi_0}(G/H)$

Isometry group G is the global symmetry of the $D = 3$ theory

Action of G on a geodesic (ϕ_0, Q)

Fix $\phi_0 \equiv 0$, G-orbit of geodesic is H-orbit of $Q \in T_0$
Axisymmetric solutions $\phi = \phi(\tau, \theta)$, still defined by unique point $\phi_0 = \lim_{\tau \to 0} \phi(\tau, \theta)$ and a vector $Q \in T_{\phi_0}$. Fix G/H by setting $\phi_0 = 0$, $T_{\phi_0} = T_0$.
Axisymmetric solutions \(\phi = \phi(\tau, \theta) \), still defined by unique point \(\phi_0 = \lim_{\tau \to 0} \phi(\tau, \theta) \) and a vector \(Q \in T_{\phi_0} \). Fix \(G/H \) by setting \(\phi_0 = 0, T_{\phi_0} = T_0 \).

Tangent space at the origin \(T_0 \sim \mathbb{R} \) subspace of the Lie algebra \(\mathfrak{g} \) of \(G \), complement of the Lie algebra \(\mathfrak{h} \) of \(H \). Space has indefinite metric. \(Q \) is a matrix in \(\mathbb{R} \).
Axisymmetric solutions $\phi = \phi(\tau, \theta)$, still defined by unique point $\phi_0 = \lim_{\tau \to 0} \phi(\tau, \theta)$ and a vector $Q \in T_{\phi_0}$. Fix G/H by setting $\phi_0 = 0$, $T_{\phi_0} = T_0$.

Tangent space at the origin $T_0 \sim \mathfrak{R}$ subspace of the Lie algebra \mathfrak{g} of G, complement of the Lie algebra \mathfrak{h} of H. Space has indefinite metric. Q is a matrix in \mathfrak{R}.

Velocity vector Q is the Noether-charge matrix:

$$Q = \frac{1}{4\pi} \int_{S_2} * J = M_{ADM} K_0 + \Sigma^r K_r + \Sigma^{\text{NUT}} K_\bullet + p^\Lambda K_\Lambda + q_\Lambda K_{\Lambda} \in \mathfrak{R},$$

$J = J_i \, dx^i$ being the Noether current. Q does not contain the angular momentum \mathcal{J}!
Axisymmetric solutions $\phi = \phi(\tau, \theta)$, still defined by unique point $\phi_0 = \lim_{\tau \to 0} \phi(\tau, \theta)$ and a vector $Q \in T_{\phi_0}$. Fix G/H by setting $\phi_0 = 0$, $T_{\phi_0} = T_0$.

Tangent space at the origin $T_0 \sim \mathfrak{k}$ subspace of the Lie algebra \mathfrak{g} of G, complement of the Lie algebra \mathfrak{h} of H. Space has indefinite metric. Q is a matrix in \mathfrak{k}

Velocity vector Q is the Noether-charge matrix:

$$Q = \frac{1}{4\pi} \int_{S^2} *J = M_{ADM} K_0 + \Sigma^r K_r + n_{NUT} K_\bullet + p^\Lambda K_\Lambda + q_\Lambda K^\Lambda \in \mathfrak{k},$$

$J = J_i \, dx^i$ being the Noether current. Q does not contain the angular momentum \mathcal{J}!

Define new \mathfrak{g}-matrix Q_ψ capturing rotation:

$$Q_\psi = -\frac{3}{4\pi} \int_{S^2} \psi_{[i} J_{j]} \, dx^i \wedge dx^j = \mathcal{J} K_\bullet + \cdots \in \mathfrak{k},$$

$\psi = \partial_\varphi$ and Q, Q_ψ represent independent vectors in T_0 [arXiv:1210.4047 [hep-th]].

Static solution $Q_\psi = 0$
Global symmetry and regularity

- Action of G on the solution \Rightarrow action of H on Q, Q_ψ:

$$Q \rightarrow Q' = h^{-1} Q h \quad Q_\psi \rightarrow Q'_\psi = h^{-1} Q_\psi h \quad (h \in H)$$
Global symmetry and regularity

- Action of G on the solution \Rightarrow action of H on Q, Q_ψ:

$$Q \rightarrow Q' = h^{-1} Q h \quad Q_\psi \rightarrow Q'_\psi = h^{-1} Q_\psi h \quad (h \in H)$$

- Kerr-Newman solution (m, p, q, J). Regularity:

$$m^2 - \frac{p^2 + q^2}{2} \geq \frac{J^2}{m^2}$$
Global symmetry and regularity

- Action of G on the solution \Rightarrow action of H on Q, Q_ψ:

$$Q \rightarrow Q' = h^{-1} Q h \quad Q_\psi \rightarrow Q'_\psi = h^{-1} Q_\psi h \quad (h \in H)$$

- Kerr-Newman solution (m, p, q, J). Regularity:

$$m^2 - \frac{p^2 + q^2}{2} \geq \frac{J^2}{m^2}$$

- Q, Q_ψ diagonalizable matrices:

$$\frac{k}{2} \text{Tr}(Q^2) = m^2 - \frac{p^2 + q^2}{2} \quad \text{Tr}(Q^2_\psi) = \frac{J^2}{m^2} \text{Tr}(Q^2),$$
Global symmetry and regularity

- Action of G on the solution \Rightarrow action of H on Q, Q_ψ:

 $$Q \rightarrow Q' = h^{-1} Q h \quad Q_\psi \rightarrow Q'_{\psi} = h^{-1} Q_\psi h \quad (h \in H)$$

- Kerr-Newman solution (m, p, q, J). Regularity:

 $$m^2 - \frac{p^2 + q^2}{2} \geq \frac{J^2}{m^2}$$

- Q, Q_ψ diagonalizable matrices:

 $$\frac{k}{2} \text{Tr}(Q^2) = m^2 - \frac{p^2 + q^2}{2} \quad \text{Tr}(Q^2_{\psi}) = \frac{J^2}{m^2} \text{Tr}(Q^2),$$

- Regularity condition can be written in a G-invariant form:

 $$\frac{k}{2} \text{Tr}(Q^2) \geq \frac{\text{Tr}(Q^2_{\psi})}{\text{Tr}(Q^2)}$$

 “$=$” for extremal ($T = 0$) solutions
Singular limits...

- Limits of non-extremal axisymmetric solution studied in specific contexts (Heterotic Sugra: Cvetic, Youm 9603147; Astefanesei et al. 0606244; Kaluza-Klein Sugra: Rasheed 9505038; Larsen 9909102)
Singular limits...

- Limits of non-extremal axisymmetric solution studied in specific contexts (Heterotic Sugra: Cvetic, Youm 9603147; Astefanesei et al. 0606244; Kaluza-Klein Sugra: Rasheed 9505038; Larsen 9909102)

- General, frame-independent, geometric prescription though singular Harrison transformations (arXiv:1303.1756 [hep-th]).
Singular limits...

- Limits of non-extremal axisymmetric solution studied in specific contexts (Heterotic Sugra: Cvetic, Youm 9603147; Astefanesei et al. 0606244; Kaluza-Klein Sugra: Rasheed 9505038; Larsen 9909102)

- General, frame-independent, geometric prescription though singular Harrison transformations (arXiv:1303.1756 [hep-th]).

- Harrison generators \((\mathcal{J}_M) = (\mathcal{J}_\Lambda, \mathcal{J}^\Lambda)\) in \(\mathfrak{h}\) are in one-to-one correspondence with \((\mathcal{P}^M) = (p^\Lambda, q_\Lambda)\). MASA of \(\text{Span}(\mathcal{J}_M)\) is generated by \(\{\mathcal{J}_\ell\}, \ell = 1, \ldots, p\), is defined by the normal form of the e-m charges: \(p = \text{rank}(H/m.c.s.(H))\)
Singular limits...

- Limits of non-extremal axisymmetric solution studied in specific contexts (Heterotic Sugra: Cvetic, Youm 9603147; Astefanesei et al. 0606244; Kaluza-Klein Sugra: Rasheed 9505038; Larsen 9909102)

- General, frame-independent, geometric prescription though *singular Harrison transformations* (arXiv:1303.1756 [hep-th]).

- Harrison generators \((\mathcal{J}_M) = (\mathcal{J}_\Lambda, \mathcal{J}^\Lambda)\) in \(\mathfrak{h}\) are in one-to-one correspondence with \((\mathcal{P}^M) = (\mathcal{P}^\Lambda, q_\Lambda)\). MASA of \(\text{Span}(\mathcal{J}_M)\) is generated by \(\{\mathcal{J}_\ell\}, \ell = 1, \ldots, p\), is defined by the *normal form* of the e-m charges: \(p = \text{rank}(H/m.c.s.(H))\)

- Act on the Kerr solution \((m_K, \mathcal{J}_K)\) by means of the Harrison transformation:

\[
h = \exp \left(m_K^{\pm 1} \beta_1 \mathcal{J}_1 + \cdots + m_K^{\pm 1} \beta_p \mathcal{J}_p \right)
\]

Resulting non-extremal solution has charges in the normal form with signs depending on “\(\pm\)”.
Extremal under-rotating [Goldstein, Katmadas, 0812.4183; Bena at al. 0902.4526] and static: After applying $h = \exp \left(\sum \ell \, m_K^{\pm 1} \beta_\ell \mathcal{J}_\ell \right)$, send $m_K \to 0$ and $\mathcal{J}_K \to 0$, keeping \mathcal{J}_K / m_K^2 fixed.
Extremal under-rotating \cite{Goldstein, Katmadas, 0812.4183; Bena at al. 0902.4526} and static: After applying $h = \exp \left(\sum_{\ell} m^{\pm 1}_K \beta_\ell J_\ell \right)$, send $m_K \to 0$ and $J_K \to 0$, keeping J_K / m_K^2 fixed.

1 Only for choices of “\pm” yielding the $l_4(p, q) < 0$ non-BPS solution there is a residual $J \neq 0$ (under-rotating “almost-BPS”, single-center solution)
Extremal under-rotating [Goldstein, Katmadas, 0812.4183; Bena at al. 0902.4526] and static: After applying $h = \exp \left(\sum \ell m_{K}^{\pm 1} \beta_{\ell} J_{\ell} \right)$, send $m_{K} \to 0$ and $J_{K} \to 0$, keeping J_{K}/m_{K}^{2} fixed.

1. Only for choices of “±” yielding the $l_{4}(p, q) < 0$ non-BPS solution there is a residual $J \neq 0$ (under-rotating “almost-BPS”, single-center solution)

2. For choices of “±” yielding $l_{4}(p, q) > 0$ (BPS and non-BPS solutions) no residual rotation $Q_{\psi} = 0$ (extremal static solutions)
Extremal under-rotating [Goldstein, Katmadas, 0812.4183; Bena at al. 0902.4526] and static: After applying $h = \exp \left(\sum_{\ell} m_{K}^{\pm 1} \beta_{\ell} J_{\ell} \right)$, send $m_{K} \to 0$ and $J_{K} \to 0$, keeping J_{K}/m_{K}^{2} fixed.

1. Only for choices of “±” yielding the $I_{4}(p, q) < 0$ non-BPS solution there is a residual $J \neq 0$ (under-rotating “almost-BPS”, single-center solution)

2. For choices of “±” yielding $I_{4}(p, q) > 0$ (BPS and non-BPS solutions) no residual rotation $Q_{\psi} = 0$ (extremal static solutions)

The $m_{K}, J_{K} \to 0$ limits are Inönü-Wigner contractions:

\[Q' = h^{-1} Q h, \quad Q'_{\psi} = h^{-1} Q_{\psi} h \longrightarrow Q^{(0)}, \quad Q^{(0)}_{\psi} \text{ nilpotent} \]
Extremal under-rotating [Goldstein, Katmadas, 0812.4183; Bena at al. 0902.4526] and static: After applying $h = \exp \left(\sum \ell \ m_{K}^{\pm 1} \beta_{\ell} \ J_{\ell} \right)$, send $m_{K} \to 0$ and $J_{K} \to 0$, keeping J_{K}/m_{K}^{2} fixed.

1. Only for choices of “±” yielding the $l_{4}(p, q) < 0$ non-BPS solution there is a residual $J \neq 0$ (under-rotating “almost-BPS”, single-center solution)

2. For choices of “±” yielding $l_{4}(p, q) > 0$ (BPS and non-BPS solutions) no residual rotation $Q_{\psi} = 0$ (extremal static solutions)

The $m_{K}, J_{K} \to 0$ limits are Inönü-Wigner contractions:

$$Q' = h^{-1} Q h, \quad Q'_{\psi} = h^{-1} Q_{\psi} h \longrightarrow Q^{(0)}, \quad Q^{(0)}_{\psi} \text{ nilpotent}$$

Case 1: $\text{step}(Q^{(0)}_{\psi}) = \text{step}(Q^{(0)}) - 1$ and in the regularity condition

$$\frac{k}{2} \frac{\text{Tr}(Q'^{2})}{\text{Tr}(Q^{2})} \geq \frac{\text{Tr}(Q'_{\psi}^{2})}{\text{Tr}(Q_{\psi}^{2})}$$

both sides vanish separately in the limit $Q' \to Q^{(0)}$ and $Q'_{\psi} \to Q^{(0)}_{\psi}$.
Extremal under-rotating [Goldstein, Katmadas, 0812.4183; Bena at al. 0902.4526] and static: After applying $h = \exp\left(\sum \ell \, m_{K}^{\pm 1} \, \beta_{\ell} \, J_{\ell}\right)$, send $m_{K} \to 0$ and $J_{K} \to 0$, keeping J_{K} / m_{K}^{2} fixed.

1. Only for choices of “±” yielding the $I_{4}(p, q) < 0$ non-BPS solution there is a residual $J \neq 0$ (under-rotating “almost-BPS”, single-center solution)

2. For choices of “±” yielding $I_{4}(p, q) > 0$ (BPS and non-BPS solutions) no residual rotation $Q_{\psi} = 0$ (extremal static solutions)

The $m_{K}, J_{K} \to 0$ limits are Inönü-Wigner contractions:

$$Q' = h^{-1} Q h , \quad Q'_{\psi} = h^{-1} Q_{\psi} h \quad \to \quad Q^{(0)} , \quad Q_{\psi}^{(0)} \text{ nilpotent}$$

Case 1: $\text{step}(Q_{\psi}^{(0)}) = \text{step}(Q^{(0)}) - 1$ and in the regularity condition

$$\frac{k}{2} \, \text{Tr}(Q'^{2}) \geq \frac{\text{Tr}(Q'^{2})}{\text{Tr}(Q^{2})}$$

both sides vanish separately in the limit $Q' \to Q^{(0)}$ and $Q'_{\psi} \to Q_{\psi}^{(0)}$.

Case 2: $Q^{(0)}$ nilpotent, $Q_{\psi}^{(0)} = 0$.
The Issue of Nilpotent Orbits

In the limit $m_K, J_K \to 0$, keeping J_K/m_K fixed, we find BPS and non-BPS ($I_4(p, q) > 0$) rotating solutions $J \neq 0$. They are singular with $Q^{(0)}_\psi, Q^{(0)}$ nilpotent of the same degree.
The Issue of Nilpotent Orbits

- In the limit $m_K, \mathcal{I}_K \to 0$, keeping \mathcal{I}_K/m_K fixed, we find BPS and non-BPS ($l_4(p, q) > 0$) rotating solutions $\mathcal{I} \neq 0$. They are singular with $Q_{\psi}^{(0)}, Q^{(0)}$ nilpotent of the same degree.

- In all these limits we find the generic representative of each of the relevant H-orbit (seed solution with respect to G).
The Issue of Nilpotent Orbits

- In the limit $m_K, J_K \to 0$, keeping J_K/m_K fixed, we find BPS and non-BPS $(l_4(p, q) > 0)$ rotating solutions $J \neq 0$. They are singular with $Q^{(0)}_\psi, Q^{(0)}$ nilpotent of the same degree.

- In all these limits we find the generic representative of each of the relevant H-orbit (seed solution with respect to G).
The Issue of Nilpotent Orbits

- In the limit $m_K, J_K \to 0$, keeping J_K/m_K fixed, we find BPS and non-BPS ($l_4(p, q) > 0$) rotating solutions $J \neq 0$. They are singular with $Q^{(0)}_\psi, Q^{(0)}$ nilpotent of the same degree.

- In all these limits we find the generic representative of each of the relevant H-orbit (seed solution with respect to G).

Classifying Extremal Under-rotating and Static Solutions: Nilpotent Orbits....

Orbits of nilpotent generators $X (Q^{(0)}, Q^{(0)}_\psi)$ in \mathfrak{h} under H: $O_X^{(H)} = H^{-1} X H$.

Classification in steps:
The Issue of Nilpotent Orbits

- In the limit $m_K, \mathcal{I}_K \to 0$, keeping \mathcal{I}_K/m_K fixed, we find BPS and non-BPS ($l_4(p, q) > 0$) rotating solutions $\mathcal{I} \neq 0$. They are singular with $Q^{(0)}_\psi, Q^{(0)}$ nilpotent of the same degree.

- In all these limits we find the generic representative of each of the relevant H-orbit (seed solution with respect to G).

Classifying Extremal Under-rotating and Static Solutions: Nilpotent Orbits....

Orbits of nilpotent generators $X (Q^{(0)}, Q^{(0)}_\psi)$ in \mathfrak{g} under H: $O_X^{(H)} = H^{-1} X H$.

Classification in steps:

1. Orbits of X in \mathfrak{g}_C with respect to the action of G_C;
The Issue of Nilpotent Orbits

- In the limit $m_K, J_K \to 0$, keeping J_K/m_K fixed, we find BPS and non-BPS ($l_4(p, q) > 0$) rotating solutions $J \neq 0$. They are singular with $Q_\psi^{(0)}, Q^{(0)}$ nilpotent of the same degree.

- In all these limits we find the generic representative of each of the relevant H-orbit (seed solution with respect to G).

Classifying Extremal Under-rotating and Static Solutions: Nilpotent Orbits....

Orbits of nilpotent generators $X (Q^{(0)}, Q^{(0)}_\psi)$ in \mathfrak{k} under H: $\mathcal{O}^{(H)}_X = H^{-1}XH$.

Classification in steps:

1. Orbits of X in \mathfrak{g}_C with respect to the action of G_C;
2. Decompose them in orbits of G (Kostant-Sekiguchi)
The Issue of Nilpotent Orbits

- In the limit $m_K, J_K \to 0$, keeping J_K/m_K fixed, we find BPS and non-BPS ($l_4(p, q) > 0$) rotating solutions $J \neq 0$. They are singular with $Q^{(0)}_\psi, Q^{(0)}$ nilpotent of the same degree.

- In all these limits we find the generic representative of each of the relevant H-orbit (seed solution with respect to G).

Classifying Extremal Under-rotating and Static Solutions: Nilpotent Orbits...

Orbits of nilpotent generators $X (Q^{(0)}_\psi, Q^{(0)}_\psi)$ in \mathfrak{K} under H: $\mathcal{O}^{(H)}_X = H^{-1} X H$.

Classification in steps:

1. Orbits of X in \mathfrak{g}_C with respect to the action of G_C;
2. Decompose them in orbits of G (Kostant-Sekiguchi);
3. Use H-invariant quantities (signatures of tensor classifiers) to decompose them further in orbits of H, Fre’, Sorin, M.T., arXiv:1103.0848
The Issue of Nilpotent Orbits

In the limit $m_K, J_K \to 0$, keeping J_K/m_K fixed, we find BPS and non-BPS $(l_4(p, q) > 0)$ rotating solutions $J \neq 0$. They are singular with $Q^{(0)}_\psi, Q^{(0)}$ nilpotent of the same degree.

In all these limits we find the generic representative of each of the relevant H-orbit (seed solution with respect to G).

Classifying Extremal Under-rotating and Static Solutions: Nilpotent Orbits....

Orbits of nilpotent generators $X (Q^{(0)}, Q^{(0)}_\psi)$ in \mathfrak{g} under H: $\mathcal{O}^{(H)}_X = H^{-1}XH$.

Classification in steps:

1. Orbits of X in \mathfrak{g}_C with respect to the action of G_C;
2. Decompose them in orbits of G (Kostant-Sekiguchi);
3. Use H-invariant quantities (signatures of tensor classifiers) to decompose them further in orbits of H, Fre', Sorin, M.T., arXiv:1103.0848
The $F_4(4)$-model

- $D = 4$, $N = 2$ symmetric SUGRA coupled to 6 vector multiplets
- Time-reduction to $D = 3 \rightarrow \frac{G}{H} = \frac{F_4(4)}{SL(2,\mathbb{R}) \times Sp'(6,\mathbb{R})}$ (pseudo-quaternionic)
The $F_{4(4)}$-model

- $D = 4$, $N = 2$ symmetric SUGRA coupled to 6 vector multiplets
- Time-reduction to $D = 3 \rightarrow \frac{G}{H} = \frac{F_{4(4)}}{\text{SL}(2,\mathbb{R}) \times \text{Sp}'(6,\mathbb{R})}$ (pseudo-quaternionic)
- Complete classification of $H = \text{SL}(2,\mathbb{R}) \times \text{Sp}'(6,\mathbb{R})$-nilp. orbits in $\mathcal{K} = (2, 14')$

[W. Chemissany, P. Giaccone, D. Ruggeri and M. T.,1203.6338]
The $F_{4(4)}$-model

- $D = 4$, $N = 2$ symmetric SUGRA coupled to 6 vector multiplets
- Time-reduction to $D = 3 \rightarrow \frac{G}{H} = \frac{F_{4(4)}}{SL(2,\mathbb{R}) \times Sp'(6,\mathbb{R})}$ (pseudo-quaternionic)
- *Complete classification* of $H = SL(2,\mathbb{R}) \times Sp'(6,\mathbb{R})$-nilp. orbits in $\mathcal{H} = (2, 14')$

[W. Chemissany, P. Giaccone, D. Ruggeri and M. T.,1203.6338]
Conclusions

- Introduced a new tool for studying axisymmetric solution: g-valued Q_{ψ}
Conclusions

- Introduced a new tool for studying axisymmetric solution: g-valued Q_{ψ}
- Defined general geometric prescription for passing from the Kerr-orbit to nilpotent orbits describing extremal under-rotating and static orbits;
Conclusions

- Introduced a new tool for studying axisymmetric solution: g-valued Q_ψ
- Defined general geometric prescription for passing from the Kerr-orbit to nilpotent orbits describing extremal under-rotating and static orbits;
- Defined general procedure for constructing nilpotent H-orbits in T_0;
Conclusions

- Introduced a new tool for studying axisymmetric solution: g-valued Q_{ψ}
- Defined general geometric prescription for passing from the Kerr-orbit to nilpotent orbits describing extremal under-rotating and static orbits;
- Defined general procedure for constructing nilpotent H-orbits in T_0;

Work in progress:

- Classify real H-orbits for all symmetric SUGRAS;
Conclusions

- Introduced a new tool for studying axisymmetric solution: \(g\)-valued \(Q_\psi \).
- Defined general geometric prescription for passing from the Kerr-orbit to nilpotent orbits describing extremal under-rotating and static orbits;
- Defined general procedure for constructing nilpotent \(H \)-orbits in \(T_0 \);

Work in progress:

- Classify real \(H \)-orbits for all symmetric SUGRAS;
- Analyze all the (real) nilpotent orbits in the \(F_{4(4)} \)-model in terms of stationary (multicenter) solutions along the lines of Bossard, 1203.0530; Frè, Sorin, 1205.1233.
Conclusions

- Introduced a new tool for studying axisymmetric solution: \(g\)-valued \(Q_\psi \)
- Defined general geometric prescription for passing from the Kerr-orbit to nilpotent orbits describing extremal under-rotating and static orbits;
- Defined general procedure for constructing nilpotent \(H\)-orbits in \(T_0 \);

Work in progress:

- Classify real \(H\)-orbits for all symmetric SUGRAS;
- Analyze all the (real) nilpotent orbits in the \(F_{4(4)}\)-model in terms of stationary (multicenter) solutions along the lines of Bossard, 1203.0530; Frè, Sorin, 1205.1233.
- Relate regularity of the solution to the \(H\)-orbit (as for the single center case)
Parametrization of the scalar manifold

- \mathcal{M}_{scal} is globally isometric to a solvable group: $\mathcal{M}_{scal} \sim e^{\text{Solv}_4[\phi^I]}$
Parametrization of the scalar manifold

- $\mathcal{M}_{\text{scal}}$ is globally isometric to a solvable group: $\mathcal{M}_{\text{scal}} \sim e^{\text{Solv}}[\phi']$
- $\mathcal{M}_{\text{scal}}^{(3)}$, being pseudo-Riemannian, is only \textit{locally} isometric to a solvable group: $\mathcal{M}_{\text{scal}}^{(3)} \sim e^{\text{Solv}}[\phi']$
Parametrization of the scalar manifold

- $\mathcal{M}_{\text{scal}}$ is globally isometric to a solvable group: $\mathcal{M}_{\text{scal}} \sim e^{\text{Solv}_4[\phi^r]}$
- $\mathcal{M}^{(3)}_{\text{scal}}$, being pseudo-Riemannian, is only \emph{locally} isometric to a solvable group: $\mathcal{M}^{(3)}_{\text{scal}} \sim e^{\text{Solv}[\phi^I]}$
- Physical fields ϕ^I are \emph{local} coordinates (physical patch) for $\mathcal{M}^{(3)}_{\text{scal}}$, while ϕ^r are global coordinates on $\mathcal{M}_{\text{scal}}$
Parametrization of the scalar manifold

- $\mathcal{M}_{\text{scal}}$ is globally isometric to a solvable group: $\mathcal{M}_{\text{scal}} \sim e^{\text{Solv}_4[\phi^r]}
- \mathcal{M}^{(3)}_{\text{scal}}$, being pseudo-Riemannian, is only locally isometric to a solvable group: $\mathcal{M}^{(3)}_{\text{scal}} \sim e^{\text{Solv}[\phi^l]}
- Physical fields ϕ^l are local coordinates (physical patch) for $\mathcal{M}^{(3)}_{\text{scal}}$, while ϕ^r are global coordinates on $\mathcal{M}_{\text{scal}}$

Example $dS_2 \equiv \frac{\text{SL}(2,\mathbb{R})}{\text{SO}(1,1)}$

- $-(X^0)^2 + (X^1)^2 + (X^2)^2 = 2$
- Solvable coords.
 - $e^{-\phi} = X^0 + X^1 > 0$, $e^{-\phi} \chi = \sqrt{2} X^2$
- Metric: $ds^2 = -2d\phi^2 + \frac{1}{2} e^{-2\phi} d\chi^2$
Parametrization of the scalar manifold

- \mathcal{M}_{scal} is globally isometric to a solvable group: $\mathcal{M}_{scal} \sim e^{Solv_4[\phi']}$
- $\mathcal{M}_{scal}^{(3)}$, being pseudo-Riemannian, is only \textit{locally} isometric to a solvable group: $\mathcal{M}_{scal}^{(3)} \sim e^{Solv[\phi']}$
- Physical fields ϕ^I are \textit{local} coordinates (physical patch) for $\mathcal{M}_{scal}^{(3)}$, while ϕ^r are global coordinates on \mathcal{M}_{scal}

\textbf{Example} $dS_2 \equiv \frac{\text{SL}(2,\mathbb{R})}{\text{SO}(1,1)}$

- $-(X^0)^2 + (X^1)^2 + (X^2)^2 = 2$
- Solvable coords. $e^{-\phi} = X^0 + X^1 > 0$, $e^{-\phi} \chi = \sqrt{2} X^2$
- Metric: $ds^2 = -2d\phi^2 + \frac{1}{2} e^{-2\phi} d\chi^2$
The Issue of Nilpotent Orbits

- Orbits of nilpotent generators $X \in \mathfrak{X}$ under H: $O^{(H)}_X = H^{-1}XH$
The Issue of Nilpotent Orbits

- Orbits of nilpotent generators $X \in \mathfrak{r}$ under H: $\mathcal{O}_X^{(H)} = H^{-1} X H$

- Generic $X \in \mathfrak{r}$ element of a triple $\{h, X, Y\}$:

 $[h, X] = 2X; \ [h, Y] = 2Y; \ [X, Y] = h$, with h non compact in $\mathfrak{r}; \ X, Y \in \mathfrak{r}$
The Issue of Nilpotent Orbits

- Orbits of nilpotent generators $X \in \mathfrak{K}$ under H: $O_X^{(H)} = H^{-1}XH$
- Generic $X \in \mathfrak{K}$ element of a *triple* $\{h, X, Y\}$:

 $[h, X] = 2X; \ [h, Y] = 2Y; \ [X, Y] = h$, with h non compact in \mathfrak{H}; $X, Y \in \mathfrak{K}$
- Kostant-Sekiguchi bijection:

 $$O_X^{(G)} = G^{-1}X \ G \leftrightarrow O_{(X-Y)}^{(H_C)} = H_C^{-1}(X - Y)H_C$$

 G-orbits of X labeled by the H_C-invariant spectrum of $ad_{X-Y}(\mathfrak{H}_C)$ (β-labels)
The Issue of Nilpotent Orbits

- Orbits of nilpotent generators $X \in \mathfrak{r}$ under H: $O^{(H)}_X = H^{-1} X H$
- Generic $X \in \mathfrak{r}$ element of a triple $\{h, X, Y\}$:
 \[[h, X] = 2X; \quad [h, Y] = 2Y; \quad [X, Y] = h, \] with h non compact in \mathfrak{g}; $X, Y \in \mathfrak{r}$
- Kostant-Sekiguchi bijection:

\[
O^{(G)}_X = G^{-1} X G \leftrightarrow O^{(H_C)}_{(X - Y)} = H_C^{-1} (X - Y) H_C
\]

G-orbits of X labeled by the H_C-invariant spectrum of $ad_{X - Y}(\mathfrak{g}_C)$ (β-labels)

G-orbits of X split into different H-orbits, labeled by the H-invariants:
The Issue of Nilpotent Orbits

- Orbits of nilpotent generators $X \in \mathfrak{K}$ under H: $O^{(H)}_X = H^{-1}XH$
- Generic $X \in \mathfrak{K}$ element of a triple $\{h, X, Y\}$:

 $[h, X] = 2X; [h, Y] = 2Y; [X, Y] = h$, with h non compact in \mathfrak{K}; $X, Y \in \mathfrak{K}$
- Kostant-Sekiguchi bijection:

 $O^{(G)}_X = G^{-1}XG \leftrightarrow O^{(H_C)}_{(X-Y)} = H^{-1}_C(X-Y)H_C$

 G-orbits of X labeled by the H_C-invariant spectrum of $ad_{X-Y}(\mathfrak{K}_C)$ (β-labels)

 G-orbits of X split into different H-orbits, labeled by the H-invariants:

- Spectrum of $ad_h(\mathfrak{K})$ (γ-labels) [Bossard, Michel, Pioline, 0908.1742; Kim, Hornlund, Palmkvist, Virmani, 1004.5242]
The Issue of Nilpotent Orbits

- Orbits of nilpotent generators $X \in \mathfrak{g}$ under H: $O^{(H)}_X = H^{-1}XH$
- Generic $X \in \mathfrak{g}$ element of a triple $\{h, X, Y\}$:
 $[h, X] = 2X; [h, Y] = 2Y; [X, Y] = h$, with h non compact in $\mathfrak{g}; X, Y \in \mathfrak{g}$
- Kostant-Sekiguchi bijection:
 $O^{(G)}_X = G^{-1}XG \leftrightarrow O^{(H_C)}_{X-Y} = H_C^{-1}(X-Y)H_C$

G-orbits of X labeled by the H_C-invariant spectrum of $ad_{X-Y}(\mathfrak{g}_C)$ (β-labels)

G-orbits of X split into different H-orbits, labeled by the H-invariants:

- Spectrum of $ad_h(\mathfrak{g})$ (γ-labels) [Bossard, Michel, Pioline, 0908.1742; Kim, Hornlund, Palmkvist, Virmani, 1004.5242]

- Signature of H-covariant symm. tensors (Tensor Classifiers) [Frè, Sorin, M.T., 1103.0848, 1107.5986; W. Chemissany, P. Giaccone, D. Ruggeri and M. T., 1203.6338]
The Issue of Nilpotent Orbits

- Orbits of nilpotent generators $X \in \mathfrak{K}$ under H: $O^{(H)}_X = H^{-1} X H$
- Generic $X \in \mathfrak{K}$ element of a triple $\{h, X, Y\}$:

 $[h, X] = 2X; \ [h, Y] = 2Y; \ [X, Y] = h$, with h non compact in \mathfrak{g}; $X, Y \in \mathfrak{K}$
- Kostant-Sekiguchi bijection:

$$O^{(G)}_X = G^{-1} X G \leftrightarrow O^{(H_C)}_{(X - Y)} = H_C^{-1} (X - Y) H_C$$

G-orbits of X labeled by the H_C-invariant spectrum of $ad_{X - Y}(\mathfrak{g}_C)$ (β-labels)

G-orbits of X split into different H-orbits, labeled by the H-invariants:

- Spectrum of $ad_h(\mathfrak{g})$ (γ-labels) [Bossard, Michel, Pioline, 0908.1742; Kim, Hornlund, Palmkvist, Virmani, 1004.5242]
- Signature of H-covariant symm. tensors ($\textbf{Tensor Classifiers}$) [Frè, Sorin, M.T., 1103.0848, 1107.5986; W. Chemissany, P. Giaccone, D. Ruggeri and M. T., 1203.6338]